Skip to main navigation Skip to main content Skip to page footer

Ε4203 - EXPLORATION OF THE EARTH’S INTERIOR

INSTRUCTORS

Lectures:

P. Vallianatos, Prof.

A. Tzanis, Prof.

G. Kaviris, Assoc. Prof.

Lab. Training:

G. Kaviris, Assoc. Prof.

A. Tzanis, Prof.

P. Vallianatos, Prof.

S. Chailas, Laboratory Technical Staff

eClass Webpage

COURSE KEY ELEMENTS

LEVEL / SEMESTER:

EQF level 6; NQF of Greece level 6 / 4th

TYPE:

Scientific Area, Specific background, Skills development

TEACHING ACTIVITIES - HOURS/WEEK  - ECTS:

Lectures and Practical Training
4 hours of lecturing,
1 hour of practical exercises per week,
4 ECTS credit

Prerequisites:

Recommended:

  • Υ3203 - Seismology
 

Language of instruction and Assessment:

Greek  (V.S.1 English)

Availability to Erasmus+ Students:

YES in English

COURSE CONTENT:

A. Lectures

  • Methods of identification of phases propagating within the earth using local, regional and teleseismic distance seismological data.
  • Distinguishing continental and oceanic crust through seismic wave propagation properties.
  • Methods to identify key crustal discontinuities, such as Conrad and Moho.
  • Elucidation of the structure of the crust.
  • Study of the mantle structure which extends to the Gutenberg discontinuity, separating the upper and lower mantle.
  • Identification of discontinuities in the upper mantle by identifying triplication seismic phases.
  • Study of the core structure, the Lehman discontinuity, and separation of the core into outer and inner.
  • Identification of a shadow zone and identification of seismic phases that propagate through the core.
  • Determination of velocity patterns in the Earth’s interior and of travel times on local, regional and global scales.
  • Surface wave propagation to detect multiple paths and phases of rotational waves.
  • Surface wave scattering, dispersion curves and their inversion for calculating transverse wave velocity with depth.
  • Surface wave tomography for the detection of group, phase and transverse wave velocity anomalies.

B.  Practical and Laboratory Exercises :

  • PART A: Applications of Snell's law, calculation of critical angle, angle of reflection, angle of refraction, ray parameter for P, SV and SH waves.
  • PART B: Calculation of epicentral distances, arrival times and propagation velocities of direct, reflected and diffracted body waves, layer depths and triplication phase imaging.
  • PART C: Trajectories of global surface waves, calculation of arrival times, travel time curves, apparent propagation velocity of Rayleigh waves.
  • PART D: Calculation of Rayleigh wave group velocity dispersion curves using time-variable Gaussian filters..

LEARNING ACTIVITIES - TEACHING METHODS:

PLANNED LEARNING ACTIVITIES:

Activity Student’s effort
Lectures26 hours
Practical exercises26 hours
Unguided Study44 hours
Preparation for final Assessment4 hours
Total student effort100 hours

ASSESSMENT METHODS AND CRITERIA

The assessment process is conducted in Greek (there is the possibility of examination in English for Erasmus students), with the final examination on the entire course material and, presentation of individual essay on a specific methodology on Earth’s interior exploration and includes:

I. LECTURES (50%)

  • Written Exam with Short Answer Questions and
  • Individual reports

II. PRACTICE EXERCISES (50%)

  • Problem solving during the Practice Exercises, Delivery of Laboratory reports
  • Written exam with Solving Exercises and Problems

The evaluation criteria of the course and the participation rates are described in the student handbook.


RECOMMENDED BIBLIOGRAPHY

Suggested Literature:

  • Α. Τσελέντης, Γενική σεισμολογία, Τόμος Α, [Κωδ. ΕΥΔΟΞΟΣ: 59395397]
  • Α. Τσελέντης, Σύγχρονη σεισμολογία, [Κωδ. ΕΥΔΟΞΟΣ: 9773]
  • Β. Κ. Παπαζάχος, Γ.Φ. Καρακαΐσης, Π. Μ. Χατζηδημητρίου, Εισαγωγή στη σεισμολογία, [Κωδ. ΕΥΔΟΞΟΣ: 11254]
  • Bourova, E., Kassaras, I., Pedersen, H.Α., Yanovskaya, T., Hatzfeld, D. & Kiratzi, A., 2005. Constraints on absolute S velocities beneath the Aegean Sea from surface wave analysis. Geophys. J. Int, 160, 1006-1019.
  • Bowman, J., M. Ando (1987) Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal of the RAS, 88, 25–41.
  • Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary reference Earth model, Phys. Earth planet. Inter., 184, 297–356.
  • Goes, S., Govers, R. & Vacher, P., 2000. Shallow mantle temperature under Europe from P and Swave tomography, J. geophys. Res., 105(B5), 11 153–11 169.
  • Hatzfeld D., Karagianni, E., Kassaras, I., Kiratzi, A., Louvari, E., Lyon-Caen, H., Makropoulos, K., Papadimitriou, P., Bock, G. and Priestley, K., 2001. Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation. J. Geophys. Res., 106, No. 12, 30737-30753.
  • Herrmann, R.B., 1973. Some aspects of band-pass filtering of surface waves, Bull. Seism. Soc. Am., 62, 129-139.
  • Herrmann, R.B., 1987. Computer Programs in Seismology, Volume IV: Surface Wave Inversion, St Louis University, St Louis, MO.
  • Kassaras, I., Louis, F., Makropoulos, K., Magganas, A. and Hatzfeld, D., 2009. Elastic-Anelastic Properties of the Aegean Lithosphere-Asthenosphere Inferred from Long Period Rayleigh Waves, in "The Lithosphere: Geochemistry, Geology and Geophysics", Eds. J. E. Anderson and R. W. Coates, ISBN: 978-1-60456-903-2, Nova Publishers, N.Y., USA, p. 267-294
  • Kassaras, I., Makropoulos, K., Bourova, E., Pedersen, H. & Hatzfeld, D., 2005. Upper mantle structure of the Aegean derived from two-station phase velocities of fundamental mode Rayleigh waves. The South Aegean Active Volcanic Arc, Developments in Volcanology, Volume 7, Hardbound, ISBN 0-444-52046-5, Imprint ELSEVIER: 19-45.
  • Karagianni, E.E. et al., 2002. Rayleigh wave group velocity tomography in the Aegean area, Tectonophysics, 358, 187–209.
  • Kaviris, G., Papadimitriou, P., Kravvariti, Ph., Kapetanidis, V., Karakonstantis, A., Voulgaris, N. and Makropoulos, K., 2015. A detailed seismic anisotropy study during the 2011-2012 unrest period in the Santorini Volcanic Complex. Physics of the Earth and Planetary Interiors, 238, 51-88.
  • Kaviris, G., Spingos, I., Kapetanidis, V., Papadimitriou, P., Voulgaris, N. and Makropoulos, K., 2017. Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the western Gulf of Corinth (Greece) during 2013. Physics of the Earth and Planetary Interiors, 269, 148–164.
  • Levshin, A.L., 1989. Surface waves in media with weak lateral inhomogeneity, in, Seismic Surface Waves in a Laterally Inhomogeneous Earth, pp. 35–69, ed. Keilis-Borok, V.I., Kluwer Academic Publishers, Dordrecht.
  • Long, M.D., 2009. Complex anisotropy in D″ beneath the eastern Pacific from SKS-SKKS splitting discrepancies. Earth Planet. Sci. Lett. 283, 181–189.
  • Long, M.D. and Lynner, C., 2015. Seismic anisotropy in the lowermost mantle near the Perm Anomaly. Geophys. Res. Lett. 42, 7073–7080.
  • Long, M. D., P. G. Silver, 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319, 315–319.
  • Mitchell, B.J., 1995. Anelastic Structure and Evolution of the Continental Crust and Upper Mantle From Seismic Surface Wave Attenuation, Rev. Geoph., vol. 33, no. 4, 441–462.
  • Papadimitriou, P., 1988. Etude de la structure du manteau superieur de l' Europe et Modelisation des ondes de volume engendrees par des seismes Egeens. These de Doctorat, Univ. Paris VII, France, 1988.
  • Papadimitriou, P., Kapetanidis, V., Karakonstantis, A., Kaviris, G., Voulgaris, N. and Makropoulos, K., 2015. The Santorini Volcanic Complex: A detailed multi-parameter seismological approach with emphasis on the 2011-2012 unrest period. Journal of Geodynamics, 85, 32-57.
  • Papadimitriou, P., Karakonstantis, A., Kapetanidis, V., Bozionelos, G., Kaviris, G. and Voulgaris, N., 2018. Seismicity and tomographic imaging of the Broader Nisyros region (Greece). “Nisyros Volcano. The Kos - Yali - Nisyros Volcanic Field” e-book, Springer, 245-271, DOI 10.1007/978-3-319-55460-0.
  • Papazachos, C. & Nolet, G., 1997. P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times, J. Geoph. Res., 102, 8349–8367.
  • Romanowicz, B., 1994. Anelastic Tomography: A New Perspective on Upper-Mantle Thermal Structure, Earth. Planet. Sci. Lett. 128, 113–121.
  • Silver, P., W. Chan, 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, 96, 16429–16454.
  • Spakman W., Wortel, M.J.R. & Vlaar, N.S., 1988. The Hellenic subduction zone: a tomographic image and its geodynamical implications, Geoph. Res. Lett., 15(1), 60–63.
  • Tiberi, C. et al., 2000. Crustal and upper mantle structure beneath the Corinth rift (Greece) from a teleseismic tomography study, J. geophys. Res., 105(B12), 28 159–28 171.
  • Tselentis, G.-A., 1993. Depth-dependent seismic attenuation in western Greece, Tectonophysics, 225: 523– 528.
  • Wustefeld A., Bokelmann G., Zaroli C., G. Barruol, 2008. SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34, 515–528.
  • Yanovskaya, T.B., 1982. Distribution of surface group velocities in the North Atlantic, Izv., Phys. Solid Earth, 2, 3–11.
  • Κασσάρας Ι., 2002. Μελέτη ανώτερου μανδύα στο Αιγαίο από τη διασπορά των σεισμικών επιφανειακών κυμάτων. Διατριβή επί διδακτορία, Πανεπιστήμιο Αθηνών, Τμήμα Γεωλογίας, 2002.

Related Scientific Journals:


1 V.S.: Visitor Students (e.g. ERASMUS)